AI笔趣阁

AI笔趣阁>数学屋怎么写 > 第78章辛普森悖论(第1页)

第78章辛普森悖论(第1页)

说起悖论,可谓大名鼎鼎。那么,大家知道辛普森悖论吗?具体就是说两场活动的胜率并不能完全反映总的胜率。怎么说呢?就是第一场的胜率和第一场的胜率甲都比乙高,然而总的胜率却是甲没有乙高。请问,这是什么原因呢?核桃说。

很简单胜率的本质是比例,比例的本质是分数。而我们知道分数其实是很复杂的。两个分胜率看似和总胜率有关,事实上却是风马牛不相及的两个比例。我认为两个比例就是不能真实反映总的比例的。举个例子,有人说中国的网速没有阿富汗的快。为什么会这么说呢?原来我国虽然有300万个基站,但是我国人口很多。还有就是很多基站都建在偏远地区,而阿富汗的基站全部都建在繁华地区。我们知道基站越多,网速越快。所以,就有个上述的结论。这说明什么?比例并不能完全反映真实情况,甚至可能导致错误。

埃斯皮诺萨,你错了。比例是可以反映真实情况的。只不过要求有点高。如果甲乙参与了两场同样的活动,那么两场活动两个人参与的次数相同。举个例子,甲和乙都是编辑。第一周,甲受到了5件稿子,而他改了一篇。因此,修改率就是20100。乙还是受到了5件稿子,而他改了2篇。修改率就是40100。第二周,甲和乙都受到了5件稿子。甲修改了3篇,修改率是60100。乙修改了4篇,修改率是80100。最后,甲的总修改率是40100,而乙的是60100。你们看,第一周和第二周甲的修改率都低于乙的。而最后甲的总修改率还是低于乙的。这就说明所有样本的数量必须相等,结论才有意义。严格来说,这不是悖论。它只是说明不同比例并不是一定就可以统计的。

小尼,其实只要甲和乙在第一场的样本和第二场的样本都相等就可以了。举个例子,甲乙还是编辑。甲和乙在第一周都受到了5件稿子。甲修改了一篇,修改率是20100。乙修改了3篇,修改率是60100。他们在第二周都收到了20件稿子。甲修改了4篇,修改率是20100。乙修改了5篇,修改率是25100。最后,甲的修改率是20100。而乙的是32100。你们看,这不就避免了辛普森悖论吗!其实,当所有样本都不相同时,也有一种情况是可以避免辛普森悖论的。那么,大家知道这种情况吗?

好了,我来说一下。其实这就是一个求不等式的过程。甲乙在第一周分别收到了a、b件稿子。甲修改了m篇,修改率是ma。乙修改了n篇,修改率是nb。令ma

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

相邻推荐:魔王大人竟是我林立  贞观憨婿  开局中奖一亿,我成了资本大佬  苏辰唐依晨  皇神纪  最强小前锋  武炼虚空  魏紫风澹渊  墨北枭苏小鱼  谢瑶楚寒  这个主角明明很强却异常谨慎  山里来的小帅医  王牌团宠:小娇妻又被扒马甲了  桃源小巫医  魔兽之亡灵召唤  大明:我重生成了朱允炆  傲娇王爷宠不停魏紫风澹渊  掌上倾华  逆袭天师  我在异界当兽医  

已完结热门小说推荐

最新标签